The Strong Maximal Rank conjecture and higher rank Brill–Noether theory
نویسندگان
چکیده
منابع مشابه
The Maximal Rank Conjecture and Rank Two Brill-Noether Theory
We describe applications of Koszul cohomology to the BrillNoether theory of rank 2 vector bundles. Among other things, we show that in every genus g > 10, there exist curves invalidating Mercat’s Conjecture for rank 2 bundles. On the other hand, we prove that Mercat’s Conjecture holds for general curves of bounded genus, and its failure locus is a Koszul divisor in the moduli space of curves. W...
متن کاملThe Maximal Rank Conjecture
Let C be a general curve of genus g, embedded in Pr via a general linear series of degree d. In this paper, we prove the Maximal Rank Conjecture, which determines the Hilbert function of C ⊂ Pr.
متن کاملHigher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کاملGENERALIZED HIGHER-RANK NUMERICAL RANGE
In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated
متن کاملHigher Rank Case of Dwork’s Conjecture
In this series of two papers, we prove the p-adic meromorphic continuation of the pure slope L-functions arising from the slope decomposition of an overconvergent Fcrystal, as conjectured by Dwork [6]. More precisely, we prove a suitable extension of Dwork’s conjecture in our more general setting of σ-modules, see section 2 for precise definitions of the various notions used in this introductio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2021
ISSN: 0024-6107,1469-7750
DOI: 10.1112/jlms.12427